Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230608.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230608-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230608.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230608.tar.gz
Algorithm Hash digest
SHA256 81825e30916c70d9fe4825d81a0507f64f814685bdae8ef4b1e2327181648c2a
MD5 d48f56c7600fcf00dba536f741b6491b
BLAKE2b-256 68a2f86392f53bde0679bbf9fce629170f7d80d12e31744bec1ae9850e71b37f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230608-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230608-py3-none-any.whl
Algorithm Hash digest
SHA256 619103e42d692d910913f841c880c70fd1ec7284fd646e99595a44cbd7001c7a
MD5 904c0bdf324fe785fa5115a3494703ff
BLAKE2b-256 21d51d1e5e346bf672d1a554a89b4e7daa4ac723f951926ae7fd20f101a4d41a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page