Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230609.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230609-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230609.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230609.tar.gz
Algorithm Hash digest
SHA256 296c2f3680cf3f934cd64937ce9275f37c1cc228cea98f6f936a4fc46115dd5f
MD5 9829749f8a2a71bd854db0ad19e5acbd
BLAKE2b-256 38e0d9e472c892c2a79e54e8b27d74c2d92c933bd1174d8f4968aa9a28fa0f19

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230609-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230609-py3-none-any.whl
Algorithm Hash digest
SHA256 c402dcc20566f87873ddb81ff1cdafda518244f092f26237cef11e02060be1db
MD5 887be7af955d39fc469a97fc1a08da3d
BLAKE2b-256 f183b310154d2a9d0050d997d0f9097a98ee051b604f32617c058f243efbdb5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page