Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230610.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230610-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230610.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230610.tar.gz
Algorithm Hash digest
SHA256 e2205245056b2bca8f8fc53ac737eda69e0027d668c1ded9e68a04347e289023
MD5 66f9d77607c0841304808ff956dd676f
BLAKE2b-256 0079461f91feafc7b62cea0eaf5e1415df1616dc853a477ab4ab813beadc9d67

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230610-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230610-py3-none-any.whl
Algorithm Hash digest
SHA256 73e3c6b86eef4283b962e45d105e17660dbe4e4499e008988ea79326d5a33977
MD5 d1e008b79b7e58131b093c7d2d88f10b
BLAKE2b-256 e1f6f7796126ee300bc095845e68cfebea586b05428ecefee1a377937fe7e751

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page