Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230611.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230611-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230611.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230611.tar.gz
Algorithm Hash digest
SHA256 c278846c1c6ca053c4433673a62c5a55e19fa2747a99dd0cc32f8aa3e28c3619
MD5 58a9ad87fe7c916c13bddfd7cdf5cf14
BLAKE2b-256 c0f057d78ce416c6ba9e8cdff9a3dd0c23e7dd2bc51d6b76189025494d343674

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230611-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230611-py3-none-any.whl
Algorithm Hash digest
SHA256 f8bcfb510923e0e8c608e82aeb197729ee7459540d2628ec2a4e9d52bbeb24d8
MD5 2992d2a9f75ad826a6ea6c107f38d371
BLAKE2b-256 db9da805ca892966d8a01eb3ae5547e4c965c0974517f7f76b43a632bc62b385

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page