Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230612.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230612-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230612.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230612.tar.gz
Algorithm Hash digest
SHA256 a5b5a48520f532bcdb9bd5a25eb7a09ef7b35d13ee42302613a5392e6425f255
MD5 648483b711e7b90639d8fa1c471a5f55
BLAKE2b-256 9d75bd4de44d12b98ad56e2b4b36cd4c9e6102c7c1c66567d889fe124c52fc33

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230612-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230612-py3-none-any.whl
Algorithm Hash digest
SHA256 a594bab3504f436fc81e769e8c3c8ed047de82b197c069181acdb6dcb47684f8
MD5 714ce8d5081f162e918e379ebc38b386
BLAKE2b-256 afe929f9b50702b1ccf0b50cdcacece26456a77d8733170e5105d0ae79698a5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page