Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230613.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230613-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230613.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230613.tar.gz
Algorithm Hash digest
SHA256 2f5748dbc990f8f4cf22e9bbd2507cc52597389f726b490e4719476107d36f15
MD5 dac845009600da8f08bcba135da5e3d6
BLAKE2b-256 3c5d008e091c1d0091200867154325bc36ca05a73d03ecc5fc46bbeade7c5b71

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230613-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230613-py3-none-any.whl
Algorithm Hash digest
SHA256 869e28e1276f003a2e8a63aab2e4c0e15f746c1853c61bc226c6953fb431df0b
MD5 97a316ef494e179fe90df7ecb0056056
BLAKE2b-256 4c7f916b292b2abd5da242bec3af9a2218fadecbc272b8370a988d713c6cfe89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page