Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230614.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230614-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230614.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230614.tar.gz
Algorithm Hash digest
SHA256 86d509683e4d10a1ed7e95f83c0d11d15e749014dbb8e9013b919a41f8aec439
MD5 d6a3ea96fc79e28af695abf8f46fee83
BLAKE2b-256 f512dcb15d8a5f6247bc9be81da483b1987ea7b8b6ad5c9202f2dd5b6152bd93

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230614-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230614-py3-none-any.whl
Algorithm Hash digest
SHA256 fa8c5e3d041db7998b0674a82414dba4fd8daa27709c8846fe3f3f54dd634b9f
MD5 df7c5378886283cbf15357c9a7ada1cb
BLAKE2b-256 3778f28928b9a4342593ba3e56fe9f04e3461749c854a2480f049c04be490a8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page