Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230617.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230617-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230617.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230617.tar.gz
Algorithm Hash digest
SHA256 097912cd22032846f56cb558e5c75dd56b11603c245b75e4e0adcd1a35c3db53
MD5 4992fa0d2e393eed7d1f431f07c47a29
BLAKE2b-256 93a641066dadefa48844152277b378ed5f337e4d7f3ec91b64531e5f0e47d89a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230617-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230617-py3-none-any.whl
Algorithm Hash digest
SHA256 4221f92ddc137eb1747fdb99357bad58706c3269e8a928a9a28527d00a41a1b3
MD5 93c9122bd3a677cf5968f89af807e853
BLAKE2b-256 c145dc5fcd2b252d226fdd549094062619f8ec82af773daa62f14b279f77393b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page