Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230618.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230618-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230618.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230618.tar.gz
Algorithm Hash digest
SHA256 c50f5163928524effefd81953464c3cfec8457c95c5b4d32497a850f89d68d59
MD5 cf1eaefd537b3b4b8a21a7b41a8dacd9
BLAKE2b-256 136d9ef506eae9ffb98b4854e3c8757d397bc8a42eb74c1267b429260b143029

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230618-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230618-py3-none-any.whl
Algorithm Hash digest
SHA256 5a19888ff3097dba2cff3923ab417ec5393f3698fdf799a48cf7960de9c1bd20
MD5 79c4e1f2044977e868543d7cae40f4c7
BLAKE2b-256 9611a012ccbe1ad53fb8c6070a378f9f5da990b074cdc68692f1f46216cab1ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page