Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230619.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230619-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230619.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230619.tar.gz
Algorithm Hash digest
SHA256 7778fe74bd6c7f2f9a3c188d2aa9999c96104a01f21b196413f1a674524106a5
MD5 c84258e62f7d4f2f04a69c95aea6546c
BLAKE2b-256 2555372d501c5ea29d0371718f3e99fd7374eaa19e7d89d743644d3eebbf7655

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230619-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230619-py3-none-any.whl
Algorithm Hash digest
SHA256 a39d9aeb4a783df2a7e75c126145769f8ac252098bdcc1b76b9de329300b139a
MD5 99aa525c131b42709f356509671e8af7
BLAKE2b-256 c86c0211abff6b1e6a172d8ef8acddd8528c3d440d427de37e1827edcf552ec1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page