Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230623.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230623-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230623.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230623.tar.gz
Algorithm Hash digest
SHA256 83bc5e4349157cc92936b0dc540f398f6d81c26eea1c20d8b9b4e7c459cd6101
MD5 e3982fc681d9f375b66862f4d44e3249
BLAKE2b-256 0310c60af1fd1a5daa4183cc2c1a3d2be0e9ee52b70eb6073ac1cc91d2d298a1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230623-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230623-py3-none-any.whl
Algorithm Hash digest
SHA256 537fc9f21df9fd07a778569dcde94ea42601f87d19318e5c66ba51d578256727
MD5 1ea4b109f745390e52c415ecdfb94760
BLAKE2b-256 e82453af6501aa98a0de1118936d3a26f3cf6dcb33be98878a6ee86b6592fe09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page