Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230624.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230624-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230624.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230624.tar.gz
Algorithm Hash digest
SHA256 1bd78900edb404a06e47e4693626f7f740be6c6d2961ebbe3ec65c9194a26d39
MD5 2fa5f86ed633c6630f8c47b5d339035a
BLAKE2b-256 d084b0f70ee9f73074c0c501e84ff8de09fd03a981db5c5159605c69e2efe16f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230624-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230624-py3-none-any.whl
Algorithm Hash digest
SHA256 52dfca5ff15b178658934dbebbf764070f3d90d0a1561c3840b045cb80436e36
MD5 c5c401894998becbe1ffcb12add4789f
BLAKE2b-256 e3278d6d797c73e80dacdcd67ff392a5a25e691512ad3bdb12f1bc088244c2a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page