Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230625.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230625-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230625.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230625.tar.gz
Algorithm Hash digest
SHA256 65057ffa078b7f4996ac24b71d203dd4d20d370d340411649fbd8a4d5e511993
MD5 5ed0924266a2e41a82b0611efb17e89d
BLAKE2b-256 aa30960a31cdb6f50528a706e9a744c706c08963ca093ba9300dcc66d5f69278

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230625-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230625-py3-none-any.whl
Algorithm Hash digest
SHA256 1102d616460889556296f70e504749e66efa7023dc6ba60a067fce99670a22d3
MD5 19877d8d205bce39e20a9d6fa87b000f
BLAKE2b-256 6127a8b147690dc2fdedca93dc30ce4d7789e8961ef4c9aa6d83b9eab461b21d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page