Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230626.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230626-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230626.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230626.tar.gz
Algorithm Hash digest
SHA256 44b97298ccffd9b15fa4b606a9d34df17e38a2cfe585aad7ce550f809ad7844d
MD5 edd17bf89816fe3ba2416f1229c5c60b
BLAKE2b-256 0fa9372c19f3e076514404a7c5e1113035fbaeb8abc17df2daa1495af7c72b85

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230626-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230626-py3-none-any.whl
Algorithm Hash digest
SHA256 657e2d863c7f8a7bc630fa234174291d4a3eee946d2314751f36682afbccb7a8
MD5 617142240b680afa1fe2ff98639140d3
BLAKE2b-256 60afb56f3577af71b3c49e3a2d3db577b5eb2aa6640e9b22b23a6de936c24a12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page