Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230627.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230627-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230627.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230627.tar.gz
Algorithm Hash digest
SHA256 cd5817c9ad20df578c76da5c11b3db1d5d8f6e16a98ca4f88954abb72cb593bf
MD5 a7e13c001008d6d207ad8089b90124ed
BLAKE2b-256 983e83476548077251611508f4d6c80df005f4b3b9a471a0ddaa66dba606f17e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230627-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230627-py3-none-any.whl
Algorithm Hash digest
SHA256 c09440f1c485e692d7059867b885ba5b31cdde0803d145280707a51bf39b05f3
MD5 1c4630c39154724aadcf9e500002f509
BLAKE2b-256 b37b33ac2883f3808f1d3550c21c03c53a62862cf60edc9d55324dc1fb3e405f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page