Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230628.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230628-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230628.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230628.tar.gz
Algorithm Hash digest
SHA256 5f0cdbda1905d91b957a21f43e4164f30aa8f1e9da36612ba75899792861755a
MD5 4795f85161bc0d41b42fa9f4bf9e2b7e
BLAKE2b-256 648e5c3e88095b996b29b73a828c62b8926fa8c80725daed38d55a40ddaab7c7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230628-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230628-py3-none-any.whl
Algorithm Hash digest
SHA256 75f64e0b05d57b4c72f64ffb9f91bdb1b40ce09d6379644a2fca63f5d2ed23ef
MD5 12ad54f39fe62e2552a85485f068a098
BLAKE2b-256 e5615bdd7d2261bd58fc37b2ba1c8f12313e61ec5a6f4450de15e89dbe5da36c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page