Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230629.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230629-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230629.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230629.tar.gz
Algorithm Hash digest
SHA256 862dbc394ecd478e8bd94144fc3b1b7adb0d2ca719d5e0ba8e3425d595f6b821
MD5 f3236f7449cbe0b93d5bee8c421faa3c
BLAKE2b-256 6260ce3d6f19f568d0b564191d5b93e704a06c72af67689fdae6216b51963d2e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230629-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230629-py3-none-any.whl
Algorithm Hash digest
SHA256 d0dd5c50538814f0a665eb9ed4d8f4388784ec4e7df75c419f98b14eaa01d4c7
MD5 bb392a697fc9b3c34be4ba54e8269bb8
BLAKE2b-256 d0ececee760817e1e0c0510b51a7948c7d0562ea6448cfe9654aca7b12f32c0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page