Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230630.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230630-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230630.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230630.tar.gz
Algorithm Hash digest
SHA256 539900fcd56c484feffba8b9e640edd507cc5ada29a78cda33a355f07b32e8fd
MD5 e9757daab0ce3720e4db5a4ce8c008b4
BLAKE2b-256 61267cea2dfdb184afa075d0787d93e98a1d4e8a0bef91870e46169ff8a93f88

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230630-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230630-py3-none-any.whl
Algorithm Hash digest
SHA256 b0d6e4006a98174c23494da7d15f742e79a76f75d34f6e90f5c6d82a32673071
MD5 5b51a57abdb89efb84479f9bd945fdc6
BLAKE2b-256 0002501c5abac069779134670e8c5eff127851af6399429ade05257890da286e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page