Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230702.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230702-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230702.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230702.tar.gz
Algorithm Hash digest
SHA256 fa00279b4c74acc2404163d419ba8f6a099b0869552a84614db6dbfacad4adcd
MD5 c91f342c12149e9303cdac4046b639bf
BLAKE2b-256 1a8d4b0d7c9e5251087ef23f73897ce6b2e4c334c4ba8aa1271b068232880748

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230702-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230702-py3-none-any.whl
Algorithm Hash digest
SHA256 14fc45859356911542c32be7e2e34d5bf60473f96f8c906d57dd257ea0c7b6f2
MD5 bd8d6357a7fd9dcaf36f4c3871907717
BLAKE2b-256 7ed8ec193516960b4cf9de9e8846b4701bc90b0528267d420b5d6b642b84abc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page