Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230703.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230703-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230703.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230703.tar.gz
Algorithm Hash digest
SHA256 90ef5f988eb58d1e892abc962a8c7eab2d5bf7f3b8f96af62296184a5a09e484
MD5 8a2a8378f2265855fcf2d47d5679914d
BLAKE2b-256 6bd1b1c66ce8322d9b62188cb8fcd29a9eed84bd00fa2bf5a0d818c77563cdf6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230703-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230703-py3-none-any.whl
Algorithm Hash digest
SHA256 eb5766727cc7d6530939f8b4e652a10f009ef484c6591a3206bf4c443f2e5c6f
MD5 fd3daec2600ee12cde247330ace440f5
BLAKE2b-256 ce51832c7a3a3c746671de32c1516b5f74e4f1d1b8d5ca507802886df464547b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page