Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230704.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230704-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230704.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230704.tar.gz
Algorithm Hash digest
SHA256 ee3e4ff7043143949416f9e2ca5636ccdbfebfbc49ee0091a77d431fcf667f5c
MD5 2c5e7867001fe841f8345f6ccf72386f
BLAKE2b-256 98ccf17b3436e8a6c4d99eec3184dd9af32bef279a99b74821f5db3c037f3ecf

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230704-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230704-py3-none-any.whl
Algorithm Hash digest
SHA256 9cf7c0c9c7a8e003fdaa35a58d5713214f0359b5b7d0236c46c9ab8f47287ce0
MD5 765aaf4a624e4ca77b1e8acb497066f9
BLAKE2b-256 30b8c57a820e8d1cfbf3c6f368d441628404f5431a03014cce13d4b63a6f829a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page