Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230705.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230705-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230705.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230705.tar.gz
Algorithm Hash digest
SHA256 d6adab154de0369242707f336f64c3932fc4ba27b485a8ddd17a7996979cecc6
MD5 8a571a23a2e38862f623e231331fc20c
BLAKE2b-256 2030b8cd9b34e702be72a594264731aa29e39ca75fe57ff316282771d402eafb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230705-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230705-py3-none-any.whl
Algorithm Hash digest
SHA256 3aaa005b085078dd0aeefdb2517121f956197fa07feeb8955618d8328b4b3e61
MD5 a03788eae8bf72c3ec60165420573e31
BLAKE2b-256 21364fe73b97d1fce7ad65771a0662a521d230e4a8bbe619d84eed5186da0185

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page