Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230706.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230706-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230706.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230706.tar.gz
Algorithm Hash digest
SHA256 9d38d128b9e441e9b0ad775731105768d29ecd53cf31957eefa3e3628f728948
MD5 1184cb8bf2d116f03ca767e65bf2a6be
BLAKE2b-256 ec9e03e46260c2a97c35c3497fb1dcc5db06431a20c7452b1dfe70b2c583111e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230706-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230706-py3-none-any.whl
Algorithm Hash digest
SHA256 62a7eb7fb2da138d79cdacad12c5f9480e664cee64cf4e7aca4c7e7bc0151b79
MD5 05153ce88dde94e09d079b67bbdbeaf6
BLAKE2b-256 1ee88a1bb7a389b19018e2fdc7b19510b168d93e5956e0ec181cdcd9dd1f594a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page