Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230707.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230707-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230707.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230707.tar.gz
Algorithm Hash digest
SHA256 dda9b115365e27635dbf5a03377e656d8d0dd12a17e68fd091bd916669c057cf
MD5 44401567f299e30219eb62bacd0fdf84
BLAKE2b-256 61268b436542ab9dc819d066a77b452662c52bbbc62c7a8875b36ff4251e637b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230707-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230707-py3-none-any.whl
Algorithm Hash digest
SHA256 66ebb5427ecbfa59f7c0bc9e18b7fc1245f4a0058f4670e236b6f482e06fc49b
MD5 a4c418cac4b73b648fc4ca6c7ffdbf9f
BLAKE2b-256 75811233013c67ee4790ec7877260a4ba912edace1081ebca2f093d61a179d33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page