Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230708.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230708-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230708.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230708.tar.gz
Algorithm Hash digest
SHA256 0385784abcf6087f4cc912bb1f781e54fa3e19ec1f14d2b19d74b0d6e7268e83
MD5 33522ff4e4a5eb3638dad198b61e898b
BLAKE2b-256 d50854d5c8e63a9459d9b5073d7294c7242d7bcb266770d922dd814975c304e9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230708-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230708-py3-none-any.whl
Algorithm Hash digest
SHA256 84e8e522d828c6f0b8d3417b5e95df4a36ed2465a08b2fc1d502121a610fc701
MD5 7f80546d32ab808887f81fcec96756bc
BLAKE2b-256 21db97cde539a2234ca56675591c6684c375f6fe4bea9909e82590f56da3180e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page