Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230709.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230709-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230709.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230709.tar.gz
Algorithm Hash digest
SHA256 1f238634227c7cf57b06f505900af29cd269f237ac616200639d4802c175c704
MD5 f38fb089732489603b13748d79d6d7f6
BLAKE2b-256 83c3f73875f0c6b33c75f3732457c279e7a1b8290d31c521b23a2b831c23b3ba

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230709-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230709-py3-none-any.whl
Algorithm Hash digest
SHA256 0d748ada336e63e18ce12eaecfb5f83f6556fe688bfd813131c2896cf7dae587
MD5 5828dc7ceffb9efcf0ba948d0643d8da
BLAKE2b-256 7ab07398bdc3a550d3deb33b1469628cf4d1579796eafb20dd5b7af82b590320

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page