Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230710.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230710-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230710.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230710.tar.gz
Algorithm Hash digest
SHA256 cc90c6b2f8e23d6e21f8efcf5db32ff48e849acc61fd57d0154f51b54bb03baf
MD5 a7fedd4818cb61258f78eaa854f3d29c
BLAKE2b-256 deb38be06196b34b0bff77c0bd166a2db2c50c94fed3c762fb4dc04cbfaa833d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230710-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230710-py3-none-any.whl
Algorithm Hash digest
SHA256 71e87912ce1a41e058dd38ccf3b6810113e842fb4322af0b8833c5909e41ca7b
MD5 ae584dd8d9687ffe4a640b786561fbb1
BLAKE2b-256 f4d1447925e39df620954901d0f585a57aab5a20bcd6b19737f886646486cbbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page