Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230711.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230711-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230711.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230711.tar.gz
Algorithm Hash digest
SHA256 39baf5bdffea7349273d395971e6e3f856fdbf23105817802858404b3daa7707
MD5 81230943850ebd06b83708658c25a606
BLAKE2b-256 fca0b8b46e99c3bb7e4bcc149645adf4660fb2b2f87a5db7f342e45782ac283c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230711-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230711-py3-none-any.whl
Algorithm Hash digest
SHA256 524b395dbb022dd21e6226b111e0ddce8f60c41e9a03dd29a5eebb74cd6c9160
MD5 5a57c7470fcaf6238f6a06442e202127
BLAKE2b-256 0e09c2fc532c89a9cb47ffc747d677a6222d7e5963a1e3983b72a0824735426a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page