Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230712.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230712-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230712.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230712.tar.gz
Algorithm Hash digest
SHA256 d49d4412128f24a5685ce0d7969e8665b5fe20410be36652b554c3c3364b622a
MD5 9d1ab1b0a4cc0ddcd3902fc2f5bc55cc
BLAKE2b-256 47124a9eb1c51b61dca30752c80401d9466f35609d0989860764c971ebd4c7cc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230712-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230712-py3-none-any.whl
Algorithm Hash digest
SHA256 7516bf9e4688a5dba07787371a8d9975bd687972e167a8bac17b85738e8436c5
MD5 dfb9767648304ecaad99a5bbbfe7c8eb
BLAKE2b-256 b5aa2f6f770b8463922f8a4a71527ed46a8bcb29f51fc695ee9b8bafce866892

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page