Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230713.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230713-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230713.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230713.tar.gz
Algorithm Hash digest
SHA256 42e5a8d240b9b79fb862290ce21583685de915afe95e6fc6403fb65118ab37fd
MD5 d4579df2ac3d578c4f66fbc1b5f46bfa
BLAKE2b-256 d57d50624ab9d7d44941c88ad5c6e20eb49275b61ada549e3b90ef5ae39f298b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230713-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230713-py3-none-any.whl
Algorithm Hash digest
SHA256 5e8083cf0179191efd64fd2d00417ad3886fd701c3fbd6247b4d49c1dfc7257c
MD5 df202f0274a1f7190413a929897e34bb
BLAKE2b-256 52269e93bac7d44a4ddbc70d0faf200a6e220f61a3dae0257989b26a9eb7afcb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page