Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230714.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230714-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230714.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230714.tar.gz
Algorithm Hash digest
SHA256 3f644cafd2a28b4a63cd7040b2ba78351860cf25bb3877c39e26bbd279f470f6
MD5 ca2627ff3ab0d98c9358023e97975556
BLAKE2b-256 eb26850dfd62ec2a0621711255b3054afba4cb316c546921646ee75c7ecb4c08

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230714-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230714-py3-none-any.whl
Algorithm Hash digest
SHA256 be5d4de23f71eee9af4b3e39f7aa7609689ea77c5a3f5f686575994503dfd1a0
MD5 6385814985efef1bbb8526237eaa01df
BLAKE2b-256 3ca80c389441d9138e6dcf8da330eb4facd681246dd212062a0cc8102830e72e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page