Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230715.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230715-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230715.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230715.tar.gz
Algorithm Hash digest
SHA256 07bb1d9389d055432e16c7920e3c415dadb3c9e25fe02e71b0eda2a107d50df9
MD5 226e56b8f980dd423ddc1ba87d0318d5
BLAKE2b-256 7c6a5caa6f4ced3a5ba1f900e3200343329771ab6d1683f7db5230d6e23563ed

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230715-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230715-py3-none-any.whl
Algorithm Hash digest
SHA256 41486ffc99bc89b735abea58b6a08daa7866189891ffd9424692d51502e21d6a
MD5 2d27770bb689d4b8b3067220ec9a11d0
BLAKE2b-256 4378aae1bdbc5f53a111a9d244e9becc93fbdf0824e4a6bdf99853c603fae0ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page