Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230716.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230716-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230716.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230716.tar.gz
Algorithm Hash digest
SHA256 a2454248c14efe3e9c0d2338d7780ecaf20e1fef744b9688ccaf106266abd403
MD5 65e72f39628946f7b28aec8125151250
BLAKE2b-256 0a828ff2aaf19e1077e8625031e62944b86ef65aec2da3f07f0e08dd1c208f49

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230716-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230716-py3-none-any.whl
Algorithm Hash digest
SHA256 e3b4dcfeb09da51aef651cde2966777fa4158cee9a05c81ce3f59b59b734185e
MD5 9738f9a87711678a38950430a0bc93c6
BLAKE2b-256 038c68fc7d11214d631b52072970e25af364a9e203fc8cdce210156f9f59a82a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page