Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230717.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230717-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230717.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230717.tar.gz
Algorithm Hash digest
SHA256 c13ae214cb5f1bcfbcc59a8741eec34f53d283a8c5dbf2b2f62c8ab536456c9d
MD5 0606544bbad237b065039723fa2c62d3
BLAKE2b-256 dc0ec4f9eb9e66d2e5c7843a1b6ef2dd90b48d812dfa889da97ee1ab0db55360

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230717-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230717-py3-none-any.whl
Algorithm Hash digest
SHA256 5ec0717d2ac1a56dcc64e8f040f4140954ff8252bb53f59da659ae9cb0e840b1
MD5 383aae36900048f2c4e20e23a8935406
BLAKE2b-256 3fab80698131e706420df84bbefbdbbc2df352ddb95dac6d693fbc6df3a81d3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page