Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230718.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230718-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230718.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230718.tar.gz
Algorithm Hash digest
SHA256 9e1c1463324095d0911c2c469f6a475f81326f4d51f2b762be411372e76ab85d
MD5 5bc3b4fe8a27dcdea877a05527ea00f1
BLAKE2b-256 e45624c38b38c56cb8177eb7a7823456eeb5d30446e3c7d1d3b7b6706c65bc74

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230718-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230718-py3-none-any.whl
Algorithm Hash digest
SHA256 8ab7b9e72048726affbb542e2e8092eb0c267e2afca98e16acf82ee7d38a2e21
MD5 8dc98c99851a4bf0b92f06e48279fe42
BLAKE2b-256 65357fc10ae62516c770af8e9a07e5e2b0b42f29a892322d47f76e4b30753769

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page