Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230719.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230719-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230719.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230719.tar.gz
Algorithm Hash digest
SHA256 ba585a6b7e097bf3d4eded308a2839dcde927e33d7878780a80d58e50918c0c9
MD5 ef558f84cea8d405e1e8c6998ad62fea
BLAKE2b-256 6a6d650d4d4d7ff7eec28136c17327196e7d46acac91bf4a683115b991d96054

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230719-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230719-py3-none-any.whl
Algorithm Hash digest
SHA256 fc8b8d0dce965bbcc3f7e66e612e9cd86cb3c3de878cb0eb0c03a2eb29d39769
MD5 c428099920935df743c503b95d213734
BLAKE2b-256 81e5c446f9df7508a40d4aa43326fcb28e4a63035c71596cb7d205f00566c826

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page