Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230721.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230721-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230721.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230721.tar.gz
Algorithm Hash digest
SHA256 54d37a4e90506aca61bd90a5e3901220f7ba9a69227cc2d2c1cc3b37c30ac962
MD5 f8042d9f5508c3ee6e39447464b5ff9f
BLAKE2b-256 959e944ba243a6e5b7a215813fba57478f03ddbccf8af9c7d742a19179d6e967

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230721-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230721-py3-none-any.whl
Algorithm Hash digest
SHA256 3a3b9a3103fd6e6a14d81ea45d59c3a9cddef0f381c88372706c9652d75564b4
MD5 725ce1496c165e504d9c5f29bd478601
BLAKE2b-256 f1c043c0e759e9a8caeea3f9a340dda4f07b97f0c24d334020840ad5ff77c068

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page