Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230722.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230722-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230722.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230722.tar.gz
Algorithm Hash digest
SHA256 411257792c544cfc15e3f3216edb04c0f61c51e9ab1864449844346753203406
MD5 f50a5cee7752f47648e5f7139d2b640f
BLAKE2b-256 bcda0f0633906428261f2c292e49c5cb4cfbc757fafad1ad5e1f450323278418

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230722-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230722-py3-none-any.whl
Algorithm Hash digest
SHA256 31357c013681d86af9f3a8aaebb96145cbf86cbd57aebc9801f5202cdb577904
MD5 1b9e40fd5e30079c18c75bbc7ca05616
BLAKE2b-256 c05123329e8e7450a8f7190e50aa18710bc2a04e465e3fc1a4b3f290fcbdd41a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page