Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230723.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230723-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230723.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230723.tar.gz
Algorithm Hash digest
SHA256 276d79f8aa1078a79363dbd338003e3983b3a153daf9de40dcdc508c0713b4d4
MD5 e80ab9949aa42cde99809f848e935de5
BLAKE2b-256 004321d9ee5ceea01a59fe4b3d5b771ae51fd2a69d2e48fe843207b5cca5a012

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230723-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230723-py3-none-any.whl
Algorithm Hash digest
SHA256 89a9b9db39550e3fdbb3ad19bad652b2ed910c4de6afdb607ad8cc291fd5426e
MD5 e5ea75cb0b3790673cb6d8dd13aab382
BLAKE2b-256 78a025f5d8da3a2cbe1b8bf68eac474cec62f6a63434b74ffa3f54f90999f5f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page