Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230725.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230725-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230725.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230725.tar.gz
Algorithm Hash digest
SHA256 85546ac6cbb4727a970dabc67119cc93010ee28a5bcd6f16417fa0ad530ba10a
MD5 85e0da3f1cc3cc53cd918a1e1609f8c6
BLAKE2b-256 17dbcfa820ba5067df4fae972ef947dda97e803da582588319e0443ee35f21a1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230725-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230725-py3-none-any.whl
Algorithm Hash digest
SHA256 1252db42fed682807c8ee87210217deb61c005702bf04e5136c6285313fc5642
MD5 cb88ce0d3d0338a8d333c8ecf3c4f1be
BLAKE2b-256 dd3df4d1bd5469f1812601f0cacca97b37bddc3574f78b6ac7e66b9c31392854

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page