Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230726.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230726-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230726.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230726.tar.gz
Algorithm Hash digest
SHA256 3158e223cd0b968e21d1314ae988ba7010adba8f0cb87f82ac622856f603b6e3
MD5 c5c3c7d3bde47ad7a92e737a10ee82fa
BLAKE2b-256 8218eb4dee568fd95a67698f624400a788f777851c1ea0dcf8f63115aa06c832

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230726-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230726-py3-none-any.whl
Algorithm Hash digest
SHA256 f4f2a25eb79f9b7f7a1d5b5792118ff6f3ea8ede87c9c2009b56dcca2ba6715d
MD5 a8a40b69cf10315c01847b07ccc27662
BLAKE2b-256 573cd24496ab30ac23abff2ce34bda533d55901b890f648d97d4bb605ba7491f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page