Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230727.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230727-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230727.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230727.tar.gz
Algorithm Hash digest
SHA256 e14c6f6051bd8b950dbc273422dad4bcf2e1142c81a38654117159c70603e92e
MD5 3428408bb06f8b49fc994137cafb445c
BLAKE2b-256 ac4394afe864669cc338921626aafcdf72a5acb2a6c379e16c3c3b6719421fa3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230727-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230727-py3-none-any.whl
Algorithm Hash digest
SHA256 a5554c9925c2fc4d3765d95a662d91f95476ebccf216d518fce7ca704f4d9549
MD5 011c131431cc06e632ec31d1e2181335
BLAKE2b-256 e9570eef64829b5634b38f685b42d91b8eed1cf26a95d4213980d30c3ec183b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page