Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230728.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230728-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230728.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230728.tar.gz
Algorithm Hash digest
SHA256 f56d77f7466d63147e4a9e2f98612e1131d2bd014f62bc80c2815c4c39fc15e5
MD5 8edc6cfeeca6805310964253394d252d
BLAKE2b-256 e72573a2a562690c3ac72f0d3cd4537892447e3bdad60fd78565721f2cc7845e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230728-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230728-py3-none-any.whl
Algorithm Hash digest
SHA256 3554ae55eff68782ee12b0bdfa98f8ba1eb73438b16fc096ad1e0ebdd0a3589e
MD5 075bdd01733b5a1192fed9d70fad4dd4
BLAKE2b-256 3773bbb24947a2ca9dbf8af62a69ad5653b67c3b8aa64cf9f6a6a17578147e36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page