Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230731.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230731-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230731.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230731.tar.gz
Algorithm Hash digest
SHA256 9f85b11a7c07f38ad7748af9e68bf4dbddaaf75f908eee65792bd873f0e0f7c3
MD5 eb38421be4f34621148efe320d9d49d4
BLAKE2b-256 9d93d24edb6617f1485b8e5f8e76572e877dc2b5f3cf37e2c944006755d4640b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230731-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230731-py3-none-any.whl
Algorithm Hash digest
SHA256 977344d8c8bb8c9c519744782b6a41c0bbaf70349d19b67203f42f7091d7f69c
MD5 f6e5a9ed4fd642b58b549df205ae2f83
BLAKE2b-256 1cefdd819fe6eb86720aa1aa89eea4c4b95cfc0c00332ca4fc2be3996fa59b3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page