Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230803.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230803-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230803.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230803.tar.gz
Algorithm Hash digest
SHA256 359795ea58531ccc03e0166f477fce63842d2b41b260552727cc6e16e3afe024
MD5 c0534da2bb3f18d81cbcba9957307f81
BLAKE2b-256 15e91883ed363dfedf39271c12f0036d0df0802dd7b3bf336c95074f44a57dbc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230803-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230803-py3-none-any.whl
Algorithm Hash digest
SHA256 829db5b96fabf9046f4d1d3a3b8bdba0a6c4b6be88e4246867ec2d0e08d9c6fc
MD5 5036aa8151de395c14b5e7643cc45e4e
BLAKE2b-256 8b94b072e29eaba6f5b6fe9326abaab0c332f4ad8203c34d5d4d5d3e353b26fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page