Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230804.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230804-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230804.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230804.tar.gz
Algorithm Hash digest
SHA256 6caec46328ee8861869a132d1785ef3e2b28d79479823e4b09471785094522fc
MD5 678d1ebb6fbf7d79b21c871307a63ca8
BLAKE2b-256 e975aaf9399da984d9487ed18f43706473dc7dc5a410c82ac9c2967ec6ff907e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230804-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230804-py3-none-any.whl
Algorithm Hash digest
SHA256 3c13e1fe34b82fb238a44501e7ed20547cad54080e782e86b91d37955d04ec77
MD5 c6b438e0a59602ead16de61cf5925a4e
BLAKE2b-256 056d7c825091da8f60b96c0deaed17c9c9091f75a82adce858807d9c14b619eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page