Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230806.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230806-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230806.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230806.tar.gz
Algorithm Hash digest
SHA256 ec85ec419fd65300a0442d37a5a51e7d0df593337590071b37b43d52ec39a453
MD5 1022755b17d61f7ae37be2b88b5f13f7
BLAKE2b-256 2c60892e9fe6fef170ee23e87e808880ed7e0536ecb2916dd0c752d407573bf1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230806-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230806-py3-none-any.whl
Algorithm Hash digest
SHA256 7d5b8952f73cc68c452f5b990f9d05dd491b5f9e451c94d26c78545469ab9b3c
MD5 0f0bd7bf9ae76a0b712f74b735555853
BLAKE2b-256 dd17bc87a8e7086a0921d49a0dfee6f5b7d74059c869a6855de9aac331781136

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page