Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230807.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230807-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230807.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230807.tar.gz
Algorithm Hash digest
SHA256 99b702f9121ea5f18386a162aec86f052580fdb8c88daf245303dd32b74ca0ca
MD5 11ba644382250a13720aa57043968042
BLAKE2b-256 8a427a806675c7c8cc78dbabbb0f3330b39b55c28bad7cca9311f0d312046344

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230807-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230807-py3-none-any.whl
Algorithm Hash digest
SHA256 fc40a69b0534c5ee318399de9a942cb0ea8811dec6b7106e2538fbfdf0fea63d
MD5 56aa7dea0be731c1d99a2f488cb848b3
BLAKE2b-256 5dc7053cb8cabbbce987574af190f17971ee0dd79c995d6713068e119ab2ee8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page