Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230812.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230812-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230812.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230812.tar.gz
Algorithm Hash digest
SHA256 0995874915f57e055fd97957f0760bdd7f834b8b0533ba5c5f5dc3af5dfb1ae8
MD5 67c31e03435fcca27a861c0e33e5ee93
BLAKE2b-256 700f8e77beea33012fc146015f03a2e00e0a3f0011186aad4609a48ac3587701

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230812-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230812-py3-none-any.whl
Algorithm Hash digest
SHA256 73de40f9a1a0247606829ebe6aa3235d6cfa1cb764bcd0c9d2df935fcdd29342
MD5 bcf197d2c9ccd7b9c6726dc7b528da8e
BLAKE2b-256 c16212bf45e93586979fb3921192d70014e9d31128ab0ecbc8a38a8178ecbf29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page