Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230813.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230813-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230813.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230813.tar.gz
Algorithm Hash digest
SHA256 2befe63a482871834fe7b750ace305025fc668d3379b9c1742b49930525875ed
MD5 7768aa1fc808d8f846f619da50c9503e
BLAKE2b-256 e8249376d9d6409d116d6ab32a4a8d8770a18c753a47bbdb7b4c83176dbbd6e4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230813-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230813-py3-none-any.whl
Algorithm Hash digest
SHA256 bde4fa1b0b2aba8143847666ce039eae893ebe5b677edf067e6e7b6ed4c829a9
MD5 843e03a217fcb9486f11e82d2d80501d
BLAKE2b-256 8ac9d38495ee6e543668e7c170c930b76d7fe5d0867230ab33caa98538e927fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page